If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2-26u+10=0
a = 1; b = -26; c = +10;
Δ = b2-4ac
Δ = -262-4·1·10
Δ = 636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{636}=\sqrt{4*159}=\sqrt{4}*\sqrt{159}=2\sqrt{159}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{159}}{2*1}=\frac{26-2\sqrt{159}}{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{159}}{2*1}=\frac{26+2\sqrt{159}}{2} $
| (Y+1)=2(x-1) | | -2z^2+44z+42=0 | | S=3f-25 | | 200=0.50x-12x | | 3y+2y-y=0 | | 14z+4-12z=0 | | 2.3-y=2.301 | | –3+x=11 | | 21,060,000,000=1.4x+5.2 | | 0=(x^2-6x)-50(x^2-6x)-275 | | -4/5d=2/9 | | 8-6x-6x+9x+27=11 | | (X+42)+y=180 | | 4.6(x-2)+1.5(2x-3)=4.9 | | x^2-16x=13 | | 6r=–48 | | 3z/8+8=9 | | 2/5n+6=12 | | |-4n|=16 | | 16=x/20x= | | x+0.1x=1097500 | | 2(2+8x)+2x=-122 | | -252=-6-6(8p+1) | | 28y+8=25 | | 5/12+2/3x-15/4x=-5/2x+1 | | 4x2=7(4x-7) | | 1/9^(5x+1/2)=27^(3x-2) | | 4(k+7)-(3k+4)=-6 | | 4(x-2)+2x=2(x+6)+4x | | 16x2+40x+25=0 | | 2(x-2)+2x=2(x+6)+4x | | 9x2+7x=0 |